
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Atomic Transport and Isotopic Mass Effects in Classical Liquids
R. C. Browna; N. H. Marcha

a Department of Physics, The University Sheffield,

To cite this Article Brown, R. C. and March, N. H.(1968) 'Atomic Transport and Isotopic Mass Effects in Classical Liquids',
Physics and Chemistry of Liquids, 1: 2, 141 — 158
To link to this Article: DOI: 10.1080/00319106808083794
URL: http://dx.doi.org/10.1080/00319106808083794

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319106808083794
http://www.informaworld.com/terms-and-conditions-of-access.pdf


PhyeicaandChemistryof LiqzCirEe, 1968. Vol. 1, pp. 141-158 
@Copyright 1968 Gordon arid Breach, Science Publishers 
Printed in Great Britain 

Atomic Transport and Isotopic Mass Effects 
in Classical Liquids 
R. C. BROWN and N. H. MARCH 
Department of Physics 
The University 
Sheffield 10 

Receivej June 3, 1968 

Abstract-In classical liquids differing only in their isotopic mass M, with a 
total potential energy function independent of maw, the van Hove function 
S ( k ,  W, M ,  T )  is shown to have the form M 1 l y ( k ,  WM1lz, T ) ,  where f is the 
same function for different isotopes. This result applies also to the self part 
S,(kw) and, combined with the Kubo formula for the coefficient of self- 
diffusion D, i t  follows that D is rigorously proportional to M--IIP in this theory. 
From the corresponding correlation function expressions for the shear and 
bulk viscosit.ies, 9 and 5 respectively, i t  is found that these are both propor- 
tional to M112, a result obtained earlier on dimensional grounds by Rowlinson. 

It is argued in liquid metals, from the machine calculations of Paskin and 
Rahman, that the frequency spectrum has a rather well defined range, essen- 
tially up to the Debye frequency wd. First-order formulae, consistent with the 
isotopic mass dependence discussed above, are then obtained for diffusion and 
viscosity of liquid metals at the melting point. A n  interesting feature of the 
formula for viscosity is its explicit dependence on the long wavelength limit of 
the liquid structure factor. A more general argument is also presented, which 
leads to similar results for d-ion and viscosity even when the Debye edge 
is badly blurred, as in argon. 

Shear viscosity measurements for Lia and Li7 deviate appreciably from the 
predictions of the classical theory. Measurements of the frequency spectra of 
light isotopes may help in clarifying the situation. Another possibility might 
be to study neutron scattering from a binary isotopic mixture, the theory of 
which is discuseed in an appendix. 

1. Introduction 

This work had its origin in the measurements available on the shear 
viscosity 71 of Lis and Li7 (Ban, Randall and Montgomery, 1962). This 
seemed a particularly simple system, for Rowlinson (1953) had earlier 
pointed out that the relation between the viscosity of different isotopes 
could be obtained on essentially dimensional grounds. Our work leads to 
the same result atj his for the viscosity, but shows in classical theory how 

c P.C.L. 141 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
5
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



142 R. C. BROWN AND I?'. H. MARCH 

the time-dependent correlation functions transform with mass. This is 
dealt with in Sections 2 and 3 and then, in Section 4, we develop approxi- 
mate theories for diffusion D and shear viscosity q in liquid metals a t  the 
melting point, which are consistent with the above theory. In  Section 5 
an approximate relation between D and q is proposed while Section 6 deals 
with the puzzling discrepancies which remain for Lie and Li7 and suggests 
experiments on other light isotopes which might clarify the situation. 

2. Mass Dependence of Self-part of van Hove Correlation Function 

The probability that an atom, a t  r = 0 at  t = 0, will be found a t  r a t  
time t is defined as CJ,(rt). Then the self-part of the van Hove correlation 
function is given by 

1 "  c 

S,(kw) = - dt dr ei@.r-&)Gs(rt). 2T ' J  J 
We shall find i t  convenient to use the so-called intermediate scattering 
function, defined by 

P,(kt) = dr e"W,(rt) (2.2) I 
and we then find the standard result 

(2-3) 

where the brackets denote the ensemble average. If we choose the x axis 
along the direction of k, then we may write, 

p,( &) = (e - * W O )  - W ) ) )  

F,(&) = (e-iL(W) -2dO)). (2.4) 

We now Taylor expand xl(t) aa 

t" t 2  

2! n. (2.5) q ( t )  = Z,(O) +tX\l'(O) +-x\2'(0) + ... ++yo) + ... 

Clearly, the two sources of maas dependence in (2.6) are the derivatives 
d:)(O) and the Maxwell-Boltzmann factor e--I.*ltmkBT in the ensemble 
average. 
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ATOMIC TRANSPORT AND ISOTOPIC MASS ZFFECTS 143 

It is evident that we can formally remove the mass dependenee from the 
Maxwell-Boltzmann factor by transforming the momentum pi of the ith 
particle into a quantity qi defined by 

TO deal with the dependence of x\”)(O) on mass, we proceed as follows: 
We have, for n = 1 ,  

while, from Newton’s Law, 

Also 

(2.10) 

G o i i  back to (2.6), we we that tZ\”(O) cc M-’f2, t2x‘’(0) cc M-1, P g ) ( O )  cc M-312, 
and clearly, since we are integrating over the q’s and x’s, no further mass 
dependence arises, at least at this order in the 5:“)’s. Similarly, 

Now 

(2.12) 

and hence W12(dq,/dt) = - a@iv/ax, the latter quantity being m a s  inde- 
pendent on our assumptions. Putting s = t/Mi12 we have dla5 = Mllz(d/dt) 
and then 

(2.13) 

Sums over’i indicate aummstion over x, z and y. 
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144 R. C. BROWN AND N.  H. MARCH 

Hence &/a2 = p, /M = q,/M112, and M1/2(dx/dt)  = qz, which introduces no 
mass dependence on integration. Generalizing the above argument to  the 
nth time derivative we find 

Thus we  have,^ that xi")(O) always introduces a factor M-nJ2, which is the 
desired generalization of the previous results for n 3. But from (2.6) we 
see that the basic quantity appearing is tnx;")(0), and hence the combina- 
tion tnM-nls appears in the general term. The integrals over the q's and 
x's lead to no mass dependent terms and hence i t  follows that F,(kt) is 
dependent simply on the variable tM-lJ2 = s. 

As an obvious check of our general result, we notice that a small t 
expansion of the exponentials in (2.6) would lead to the usual moment 
results, and from de Gennes work the second w moment of S,(kw) is 
a M - l ,  the fourth is a M - 2 .  This again confirms our result (the sixth 
moment is given by Nijboer and Rahman (1966), with the proportionality 
factor M-3) as expected. Thus, our essential result may be summarized as 

F,(k,  t ,  M ,  T )  = F,(k ,  t / M I J Z ,  T ) .  (2.15) 

From (2.1) and (2.2) we have 

e-h* F,(k, t/m1I2, T )  at = e-hmM"' F,(k,  8 ,  T )  ds 
27r 

S,(kw) = - 277 

(2.16) 
where s = t/M1I2. Hence 

S,(kw) = M112f,(k, wM112, T )  (2.17) 

where f is a function defined by (2.13). 
Finally, we note that the coefficient of self-diffusion D is given by 

D = Lt w2 Lt S- s ( k 4  . 
w - 0  E - t O  k2 

Substituting from (2.14) into (2.15) we find 

(2.18) 

(2.19) 

where 
f (k ,  uM112, T )  

k2 g = Lt 
w - 0  
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ATOMIC TRANSPORT AND ISOTOPIC MASS EFFECTS 145 

Putting wM112 = w, we have finally 

We 1 D = n Lt m 2 g ( w ,  T )  = - h(T) 
W - t O  w '2 

(2.20) 

where this equation defines h in terms of g .  While h(T) depends, of course, 
on the specific force law, the mass dependence is exhibited explicitly in 

The argument, of course, is valid whatever the density p .  The special 
caaes treated by Enskog; for low density and by Longuet-Higgins and 
Pople (1956) for high density agree with the general result (2.20). 

(2.20). 

3. Generalization to Viscosity 

The exact correlation function expression for the quantity $7 + 5, 
whore 7 and 5 are the shear and bulk viscosities respectively, is well 
known, and haa the form 

where S(kw) is the sum of the 'self' and 'distinct' correlation functions and 
p is the number density. Again, generalization of the method of momenta 
shows that F(k, t ,  M ,  T ) ,  related to S through a transform which is the 
same as (2.16), has the form 

F(k, t ,  m, T )  = F(k,  t/M1lz, T ) .  (3.2 

"his follows from noticing that 

F ( W  = 2 (exp [WzAt) - z,(O)) 1 ) 
i 

= 2 ( ~ X P  [Wzi(O) - z1(O))I ~ F P  [ ik { z i ( t )  - X i ( 0 ) )  I ) 
i 

"he argument proceeds exactly as before and wing (3.2) in (3.1) we find 

$7 + 5 a M1/2 (3.4) 

$ See, for example, Chapman and Cowling (1960). 
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146 a. C. BROWN AND h-. H. MARCH 

This result, in fact, w a ~  obtained by Rowlhon (1953) from dimensional 
arguments. We see that its basic origin resides in the dependence on M of 
the intermediate scattering function shown in Eq. (3.2). Again, the 
approximate theory of Green (1952) satisfies the desired relation (3.4). 

Similarly, we can show from the relevant correlation function expression 
for 7 that we expect the same M1I2 dependence for the separate viscosity 
coefficients. 

4. Frequency Spectra and Atomic Transport Coefficients in Liquid Metals 

We wish now to consider how the previous theory relates to explicit 
results for D, 9 and 5. Equation (2.18) focusses attention on the quantity 

the so-called frequency spectrum. Rahman has calculated z (w)  for argon 
at 94°K and his results are shown in curve 1 of Fig. 1. Assuming these 
apply to  A40, curve 2 shows the explicit modifications which the present 
theory gives for A". The differences are significant and may be detectable 
experimentally. 
2 (w 1 x Kl ' crn'sec-! 

2 4 6 8 a t? 1L )6 18 

Figure 1. Frequency spectrum Z ( W )  for liquid argon at 94OK. 
W X l d " S 0 i . '  

Curve 1 
C u m  2 

hhman's result for Ado. 
Result obtained for A". 
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ATOMIC "SPORT AND ISOTOPIC MASS EFFECTS 147 

4.1. Debye frequency and diffmion in liqudd metals 

We next contrast the above results for A with the frequency spectrum 
of liquid sodium a t  its melting point, as calculated by Paskin and Rahman 
(see Paskin, 1967). Figure 2 shows that this spectrum has a rather well 

Figure 2. Frequency spectra Z ( W )  for liquid Na at the melting point. 
Curves 1 and 2 refer to two different (oscillatory) pairs potentials. Potential 

leading to curve 1 is twice aa deep at the first minimum aa potential generating 
curve 2. We have scaled curve 2 to have the same Debye frequency as curve 1. 

[NOTE ADDED IN PROOF: The ordinates should be multiplied by 0.581 

defined frequency range and in fact, from Fig. 2, this essentially extends 
aa far as the Debye frequency w d .  From the well known sum rule 

we see that the diffusion constant D ( = n z ( O ) )  a t  T, will be, in order of 
magnitude, area/range, that is 

This formula is similar to one proposed recently by Nachtrieb (1967) using 
a quite different argument. Also, a recent discussion of Ascarelli and 
Paskin (1967), which does not make explicit mention of the role of the 
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148 R. C. BROWN AND N. H. MA= 

Debye frequency, can be compared with (4.2) if we use the Lindemann 
relation that 

const TZ2 
& p / " l I S  

W d  = (4.3) 

where Q is the atomic volume. Then (4.2) shows that DM112/Tz2521/3 is a 
constant and this is the result Ascarelli and Paskin also obtain. Their 
theory gives an estimate of the constant which is quantitative, whereas 
our result (4.2), as Table 1 shows, is a t  best semiquantitative. 

TABLE 1 Diffusion constants at melting temperature 

Liquid 

Li 
Ka 
K 
cu  
Ag 
Zn 
Mg 
In 
Sn 
Pb 
A 

Dexpt x lo5 cmr sec-1 

6.5 
4.05 
3.90 
3.96 
2.55 
2.02 
1.17 
1.66 
2.05 
2.19 
1.53 

12.3 
6.4 
5.5 
4.0 
3.4 
1.98 
1.04 
2.13 
1.04 
2.07 
1.71 

1.89 
1.58 
1.41 
1.01 
1.33 
0.98 
0.89 
1.28 
0.51 
0.94 
1.12 

However we believe the assumptions of their theory are best suited to 
liquid argon and ours to liquid metals (see, however, Appendix 1).  We 
want to stress that (4.2) is consistent with D scaling as M-112. This is 
because wd a M-lJ2 and the melting temperature T,,, is the same for different 
isotopes if the potential energy function is independent of M .  

4.2. Viscosities of l@ud metds 

The above crude discussion, based on the Debye-like nature of the 
Paskin-Rahman frequency sqectrum for Na, is more interesting when 
applied to relate the viscosities of a variety of liquid metals at the melting 
point, as we shall now show. Returning to the formula (3.1), we see by 
analogy with the discussion of diffusion that the frequency function 
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ATOMIC TRANSPORT AND ISOTOPIC MASS EFFECTS 149 

plays a fundamental role in theories of viscosity. Unlike the frequency 
spectrum z ( w ) ,  we appear to have no quantitative knowledge of 8 ( ~ )  for 
any liquid to date. 

However, the argument given above for D depended only on the range 
of z (w) .  Now the most primitive theory of S ( h )  builds from the structure 
factor S(k)  and the self-correlation function S,(kw). According to Vineyard 
(1958), we have as a f i s t  approximation to the complete correlation 
function 

S(kw) = S(k)S , (kw)  (4.4) 

If we examine (4.4) in detail, it does not have the correct behavior for 
S(kw) for small k and W ,  and hence cannot be used directly to evaluate the 
viscosity. However, it tells us that the frequency dependence of S,(kw) 
ought to be closely reflected in S(kw)  and, in particular, we infer that S ( W )  

extends in frequency out to the Debye value w d .  We now have the sum 
rule 

where g(r )  is the radial distribution function, +(r)  is the pair potential and 
p is the number density of atoms. Approximating the left-hand-side by 
&(O)W, as before, we nevertheless appear to be left with a structure- 
dependent result. 

4.2.1. Relation of structure dependence to S(0) 

The Vineyard result (4.4) suggests strongly that the structure factor 
S(k)  ought to enter the viscosity rather directly. Since we are dealing with 
macroscopic properties, it can only be the long-wavelength limit S(0) 
which can affect the theory. 

We shall now show that, near the melting point, the second term on the 
right-hand-side of (4.5) is indeed intimately related to S(0).  From elastic 
constant arguments (see, for example, Egelstaff (1967) ), we have 

(4.6) 
- 1 dr g(r)r2 2 - {iJ drg(r)r !!! - wT} 2 FK 2 
9 ar 3 P  

where K ,  is the adiabatic compressibility. The error involved in replacing 
the inequality by an equality is, we estimate, of the order of 15% at  the 
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150 R. C. BROWN AND N. H. MARCH 

melting point, from rough calculations. Furthermore, the integral involv- 
ing a#/ax can be estimated from the fluid pressure and is only a few yo of 

Finally, the ratio of the specific heats y is near to unity for liquid metals 
a t  the melting point (for example, for Zn, y + 1.25) and, within the overall 
accuracy of the present argument, we can replace K ,  by the isothermal 
compressibility K T .  Then we have from (4.6) 

the integral involving as#/ax2. 

(4.7) 

But from well known density fluctuation theory 

and hence fiom (4.7) 

This establishes the intimate connection between the viscosities and S(0) 
which we had anticipated qualitatively from the Vineyard result (4.3). 
Using (3.1), (4.4) and (4.8), and noting that S(0) a t  the melting point T ,  
for liquid metals lies in the range 0.01 to 0.03, we find, a t  T, 

(4.10) 

where we have neglected the first term in (4.5) as & - & times the second 
term. Experimental results for the bulk viscosity are not very reliable, and 
we choose therefore to  make the comparison with experiment via the shear 
viscosity. This is related to the stress correlation function, and using the 
fact again that  this has a frequency range equal to  the Debye frequency, 
an identical argument to  the above leads to 

(4.11) 

This formula for 7 appears to be new and, in particular, the dependence on 
S(0) has not been derived previously. However, if we neglect the spread in 
SI.,(O) by using Lindemann’s law in (4.11):, then we find 

T’/2M1/2 
r ]  = const ~ (4.12) 

$ A derivation of Lhdemann’s law for metala which leads to an approxi- 
mate formula for Lindemann’s constant haa been given recently by Enderby 
and March (1966). 

~ 1 3  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
5
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ATOMIC TRANSPORT AND ISOTOPIC MASS EFFECTS 151 

and this formula was in fact given earlier by Andrade (1934), from a 
kinetic theory argument. His constant is adopted in comparing the 
formula with experiment in Table 2. Our constant is an underestimate by a 
factor between 2 and 3, and tells us that the frequency function deter- 
mining the shear viscosity, in contrast to z (w)  of Fig. 2, probably has quite 
a pronounced maximum a t  the origin, before falling to zero around w d .  

TABLE 2 Shear viscosities of liquids at melting point 

Liquid Expt (poise) Theory a: (MT,)*I*R-*I~ 

Li 
Na 
K 
Rb 
cs 
cu 
AU 
In 
Sn 
Ne 
A 
Kr 
Xe 

Ag 

0.0060 
0.0069 
0.0054 
0.0067 
0.0069 
0.041 
0.039 
0.054 
0.019 
0.021 
0.00 16 
0.0025 
0.0039 
0.0052 

0.0056 
0.0062 
0.0050 
0.0062 
0.0066 
0.042 
0.041 
0.058 
0.020 
0.021 
0.0019 
0.0036 
0.0055 
0.0068 

There is quite remarkable correlation for the metals. 
One h a 1  comment on the existence of a rather well-defined Debye 

frequency in liquid metals seems worth making. It is that the velocity 
auto-correlation function for A is different in character from that in Na, 
as can be seen directly from the work of Rahman (1964) and Paskin (1 967). 
The results of these workers show that there are oscillations in the case of 
Na, whereas there are none following the first node in A. The oscillations 
in Na come from the well-defined ‘edge’ on z (w) ,  the oscillations being 
damped with a damping factor like ecAd where Aw is a measure of the 
“blurring” of the Debye edge. For A, in contrast, the oscillations are not 
present because the edge is completely smeared out. The wavelength of the 
oscillations in Na gives a rough measure of w d .  
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152 R. C. BROWN AND N. H. MARCH 

5. Relation between D and '7 

If we combine formulae (4.2) and (4.1 l), we find 

MD 
.- ?--  
P ST"(0) * 

It is well known that, for a dilute hard sphere gas, 

and it would seem a t  first sight that (5.1) is a natural generalization of 
(5.2), since the structure factor S(k)  -+ 1 for a dilute gas. This argument is 
too naive, and until the temperature dependence of z (w)  and s ( w )  has been 
studied well above the melting point, the present arguments should be 
restricted to T,. However, the quantity MDp/q  is tabulated for liquid 
metals in Table 3, and is quite constant, consistent with Lindemann's 
law for the constancy of ST,(O). 

TABLE 3 Experimental results for MDp/v at melting point 

Metal D x 10'cm'sec-1 7 poise MDp/g 

Li 
Na 
K 
cu 

In 
Sn 
Pb 

Ai3 

6.5 
4.05 
3.90 
3.96 
2.55 
1.66 
2.05 
2.19 

0.0060 
0.0069 
0.0054 
0.041 
0.039 
0.019 
0.021 
0.022 

0.0056 
0.0056 
0.0061 
0.0082 
0.0065 
0.0064 
0.0071 
0.0112 

Quantitative agreement with (5.1) cannot be expected, because of the lack 
ofknowledge of the precise constants to take in (4.2) and (4.11). 

All this has prompted us to enquire just how the detailed structure 
dependence to be expected from one metal to the next will affect the 
theory. A general argument, depending though on the maas scaling of the 
Debye frequency, is given in Appendix 1. This makes it more clear why, 
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ATOMIC TRANSPORT AND ISOTOPIC MASS EFFECTS 153 

though there is no &bye-like frequency spectrum for liquid argon, the 
formulae for D and 7 still work tolerably well. 

6. Viscosity of Li6 and Li7 

As discussed in Section 1, experimental results for 7 are available for 
Lie  and Li7. The ratio of the viscosities is more like the ratio of the masses 
to the power 8 a t  the melting point, reducing to something like a power $ 
a t  about 100°C above the melting point. This is in contrast to the present 
theory, which would give simply a temperature independent factor equal 
to the ratio of the masses to the power #. This is the more worrying 
because the melting temperatures of Lis and Li7 are the same to within a 
degree or so. The Michigan group who made the measurements suggested 
the existence of quanta1 effects, but these are hard to understand in terms 
of the ratio of the Debye temperature to the melting temperature of Li. 

It would clearly be interesting now if methods could be devised to 
measure the frequency spectrum z (w)  for the two isotopes, to see if sub- 
stantial deviations from our theory exist also away from w = 0. However, 
Li6 absorbs neutrons very strongly and a direct attack on this problem 
seems precluded with present fluxes. Experiments on other light isotopes 
to measure frequency spectra would be of considerable interest. 

I n  conneetion with the puzzle over these isotopes, we have thought it 
also worthwhile to give a discussion of neutron scattering to be expected 
from a binary isotopic mixture on the present theory, from a knowledge of 
the scattering function for a pure isotope. Details are recorded in Appendix 
2, where the incoherent scattering from a mixture of two isotopes A and B 
is calculated to first-order in an expansion in MA-MB. 

7. Conclusion 

The present paper shows that the results on the viscosities of Li6 and Li7 
cannot be explained without giving up one of three basic assumptions : 

(i) Classical equations of motion. 
(ii) Kubo formulae for transport coefficients. 

(iii) Potential energy function independent of atomic mass. 

$ The ratio of specific heats y must be retained for argon, however. 
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154 R. C. BROWN' AND N. H. MARCH 

The correlation of the first-order formula (4.11) for the shear viscosity 
at the melting point with experiment suggests that the frequency depen- 
dent function determining 7 as the zero-frequency limit, should scale with 
the Debye frequency quite accurately within a group. Furthsrmore, the 
same should be true, though less precisely, for the frequency spectrum 
z (w) .  Experiments are suggested using isotopes which might help to clarify 
the situation regarding Li6 and Li7 as well as to test some of the other 
predictions in the present paper. 

Appendix 1 

Sding of frequency spectrum with Debye frequency 

The fact that a formula such as (4.2) for D has some success suggested 
to  us that a more general argument might exist. This would have to  be 
consistent with the isotopic mass scaling, the frequencyw always appear- 
ing with i W 2 .  Now the Debye frequency w d  a M-'I2 and this suggests that 
the basic variable in the frequency spectrum z (w)  should be w / w &  Further- 
more, we might argue that, within a group, the major dependence of z(w)  

on the force law is accounted for via wd and then we can write 

z(w)/z(O) = z (%)/ Z(0). 
w d  

We then find immediately that 

(Al.l) 

(A1.2) 

and if, as assumed above, Z ( x )  has approximately the same form through- 
out a group, then 

is clearly a numerical constant and the form (4.2) is regained. The constant 
varies Bomewhat from one group to another, Table 2 shows, and can 
only be obtained from a knowledge of the frequency spectrum within a 
group. The above argument holds also for the frequency function in- 
volved in the shear viscosity, which, pragmatically, appears t o  scale more 
systematically with the Debye frequency than z(w).  

We strerjs that the above argument synthesks the apparently very 
different approaches adopted by Ascarelli and Paskin (1968) and by us. 
Notwithstanding the very different forms of z(w) for A and Na, a scaling 
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law with w d  within a group gives back the essential results. In one sense, 
this is disappointing, because i t  givea us little check on the physical validity 
of a particular model. We reiterate though that a reasonably sharp edge 
on the frequency spectrum appears likely for metals, whereas a very 
blurred edge occurs in A, and presumably the other rare gases. 

Appendix 2 

Neutron scattering from an isot~pic mixture (or binary alloy) 

for neutrons is given by 

d2a 

As shown by van Hove (1954), the differential scattering cross-section 

- N - -  k, 2n e'"'r-"')r(rt)drdt (A2.1) 'I dBdw - 

where, in classical theory, 

with the a's as scattering lengths. 
For a binary A-B alloy, we may write (A2.2) in the form 

A B  

PP 
W )  = 1 r,(N 

where we have explicitly 

(A2.2) 

(A2.3) 

(A2.4) 

NA 

i 
with similar expression for rBA(rt) and r B B ( r t ) ,  where C implies summa- 

tion over atoms of species A only, etc. 
It will prove convenient to write 

(A2.5) r~~(rt) = a; G A A W  1, 
rAB(rt) = aA aAB(rt) etc. J 

and to define the self-correlation functions GAAS and G B B ~  by 
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A2.1 Partial intermediate scattering functions 

As in the monatomic case,. it is convenient to introduce intermediate 
scattering functions. This we do through the result 

and hence we obtain 

(A2.7) 

(A2.8) 

Similarly 

and 

The van Hove functions may be defined by 

(A2.10) 

(A2.11) 

etc. 

A.22 Mean mass approximation for isotopic mixture 

At this stage we introduce a mean mass M, given by 

B = c A M A + c ~ M ~  (A2.12) 

where CA and CB are the concentrations of masses MA and Mg respectively. 
An expansion parameter 6 is then used,: given by 

MA-MB 
M 6 =  (A2.13) 

'+ The me of and 6 waa suggested to us by Dr. P. Schofield. 
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Developing FAAS in (A2.10) in terms of M and 6, and correspondmgly for 
the B atoms, r(rt) in (A2.3) can be obtained. Hence, from (A2.1) the 
differential cross-section for incoherent scattering can then be written in 
the form, using an obvious notation, 

+ G ( P ) c A c ~  [u; - u;] 6 + O(6’). (A2.14) 

G ( M )  depends on the mean mass and cannot be calculated explicitly with- 
out appeal to a specific model. It would be of obvious interest to test the 
validity of the “mean mass” approximation, because the theory of this 
paper gives Ss, immediately in terms of S S M ~  or S S M ~ .  If one chooses 
an isotopic mixture so as to minimize the coherent scattering, it might be 
possible to test (A2.14). However, to estimate the O(6) term, a possible 
procedure might be to do an experiment with three isotopes in pairs, such 
that %remained constant and hence to eliminate G(M). But the magni- 
tude of the coherent scattering might then constitute a problem. 
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